

100Gb/s QSFP28 LR4 10km Transceiver HX4X-CL311x

Features

- Compliant with 100GBASE-LR4
- Support line rates from 103.125 Gb/s to 111.81 Gb/s
- Integrated LAN WDM TOSA / ROSA for up to 10 km reach over SMF
- 4x25G electrical interface (OIF CEI-28G-VSR) and 4-lane 25.78Gb/s optical interface
- Duplex LC optical receptacle
- Support Digital Monitoring interface
- No external reference clock
- RoHS-10 compliant and lead-free
- Compliant with QSFP28 MSA with LC connector
- Single +3.3V power supply
- Maximum power consumption 3.5W
- All-metal housing for superior EMI performance
- Case operating temperature

Commercial: $0 \sim +70^{\circ}$ C Extended: $-10 \sim +80^{\circ}$ C Industrial: $-40 \sim +85^{\circ}$ C

Applications

- Data Center
- Local Area Network (LAN)
- Ethernet switches and router applications

Part Number Ordering Information

Part Number	Data Rate (Gb/s)	Wavelength (nm)	Transmission Distance(km)	Temperature (°C) (Operating Case)
HX4X-CL311C	103.1		10	0~70 commercial
HX4X-CL311E	103.1	LAN WDM	10	-10~80 Extended
HX4X-CL311I	103.1		10	-40~85 Industrial

I. Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Max	Unit	Notes
Storage Temperature	T_{S}	-40	85	°C	
Power Supply Voltage	V_{CC}	-0.3	4.0	V	
Relative Humidity (non-condensation)	RH	5	95	%	
Damage Threshold	TH_d	5.0		dBm	

II. Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit	Notes
		0		70		commercial
Operating Case	T_{OP}	-10		80	°C	extended
Temperature		-40		85		Industrial
Power Supply Voltage	V_{CC}	3.135	3.3	3.465	V	
Data Rate, each Lane			25.78125		Gb/s	
Control Input Voltage High		2		Vcc	V	
Control Input Voltage Low		0		0.8	V	
Link Distance (SMF)	D			10	km	9/125um

III. General Description

Walsun'100G QSFP28 LR4 optical Transceiver integrates receiver and transmitter path on one module. In the transmit side, four lanes of serial data streams are recovered, retimed, and passed to four laser drivers. The laser drivers control 4- Distributed Feedback Laser (DFB) with center wavelength of 1296 nm, 1300nm, 1305nm and 1309 nm. The optical signals are multiplexed to a single –mode fiber through an industry standard LC connector. In the receive side, the four lanes of optical data streams are optically de-multiplexed by the integrated optical de-multiplexer. Each data stream is recovered by a PIN photo-detector and trans-impedance amplifier, retimed. This module features a hot-pluggable electrical interface, low power consumption and MDIO management interface.

The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP28 Multi-Source Agreement (MSA) and compliant to IEEE 802.3bm.

IV. Pin Assignment and Pin Description

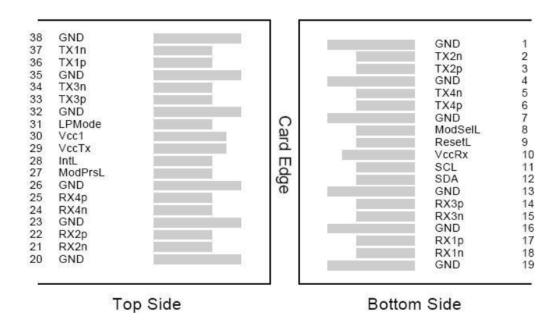


Figure 1. Diagram of host board connector block pin numbers and names

Pin	Symbol	Name/Description	Notes
1	GND	Transmitter Ground (Common with Receiver Ground)	1
2	Tx2n	Transmitter Inverted Data Input	
3	Tx2p	Transmitter Non-Inverted Data output	
4	GND	Transmitter Ground (Common with Receiver Ground)	1
5	Tx4n	Transmitter Inverted Data Input	
6	Tx4p	Transmitter Non-Inverted Data output	
7	GND	Transmitter Ground (Common with Receiver Ground)	1
8	ModSelL	Module Select	
9	ResetL	Module Reset	
10	VccRx	3.3V Power Supply Receiver	2
11	SCL	2-Wire serial Interface Clock	
12	SDA	2-Wire serial Interface Data	
13	GND	Transmitter Ground (Common with Receiver Ground)	
14	Rx3p	Receiver Non-Inverted Data Output	
15	Rx3n	Receiver Inverted Data Output	

16	GND	Transmitter Ground (Common with Receiver Ground)	1
17	Rx1p	Receiver Non-Inverted Data Output	
18	Rx1n	Receiver Inverted Data Output	
19	GND	Transmitter Ground (Common with Receiver Ground)	1
20	GND	Transmitter Ground (Common with Receiver Ground)	1
21	Rx2n	Receiver Inverted Data Output	
22	Rx2p	Receiver Non-Inverted Data Output	
23	GND	Transmitter Ground (Common with Receiver Ground)	1
24	Rx4n	Receiver Inverted Data Output	1
25	Rx4p	Receiver Non-Inverted Data Output	
26	GND	Transmitter Ground (Common with Receiver Ground)	1
27	ModPrsl	Module Present	
28	IntL	Interrupt	
29	VccTx	3.3V power supply transmitter	2
30	Vcc1	3.3V power supply	2
31	LPMode	Low Power Mode	
32	GND	Transmitter Ground (Common with Receiver Ground)	1
33	Tx3p	Transmitter Non-Inverted Data Input	
34	Tx3n	Transmitter Inverted Data Output	
35	GND	Transmitter Ground (Common with Receiver Ground)	1
36	Tx1p	Transmitter Non-Inverted Data Input	
37	Tx1n	Transmitter Inverted Data Output	
38	GND	Transmitter Ground (Common with Receiver Ground)	1

Notes:

- 1. GND is the symbol for signal and supply (power) common for QSFP28 modules. All are common within the QSFP28 module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.
- 2. VccRx, Vcc1 and VccTx are the receiving and transmission power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP28 transceiver module in any combination. The connector pins are each rated for a maximum current of 500mA.

V. Electrical Characteristics

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Symbol	Min.	Тур.	Max	Unit	Notes
Power Consumption	р			3.5	W	
Supply Current	Icc			1060	mA	
Transmitter						
Single-ended Input Voltage Tolerance	Vcc	-0.3		4.0	V	
Differential Input Voltage Swing	Vin,pp	180		1000	mVpp	
Differential Input Impedance	Zin	90	100	110	Ohm	1
Transmit Disable Assert Time				10	us	
Transmit Disable Voltage	Vdis	Vcc-1.3		Vcc	V	
Transmit Enable Voltage	Ven	Vee		Vee +0.8	V	2
		Receiver				
Differential Output Voltage Swing	Vout,pp	300		850	mVpp	
Differential Output Impedance	Zout	90	100	110	Ohm	3
Data output rise/fall time	Tr/Tf	28			ps	4
LOS Assert Voltage	VlosH	Vcc-1.3		Vcc	V	5
LOS De-assert Voltage	VlosL	Vee		Vee +0.8	V	5

Notes:

- 1. Connected directly to TX data input pins. AC coupled thereafter.
- 2. Or open circuit.
- 3. Input 100 ohms differential termination.
- 4. These are unfiltered 20-80% values.
- 5. Loss of Signal is LVTTL. Logic 0 indicates normal operation; logic 1 indicates no signal detected.

VI. Optical Characteristics

The following optical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Symbol	Min.	Typical	Max	Unit	Notes
	7	Fransmitte i	·			
	L0	1294.53	1295.56	1296.59	nm	
Lane wavelength (range)	L1	1299.02	1300.05	1301.09	nm	
	L2	1303.54	1304.58	1305.63	nm	
	L3	1308.09	1309.14	1310.09	nm	
Signaling rate, each lane			25.78125		GBd	
Side-mode suppression ratio	SMSR	30				
Total launch power				10.5	dBm	
Average launch power, each lane	Pavg	-4.3		4.5	dBm	
Extinction Ratio	ER	4			dB	
Transmitter and Dispersion Penalty, each lane	TDP			2.2	dB	
OMA minus TDP, each lane	OMA-TD P	-2.3			dBm	
Average launch power of OFF transmitter, each lane				-30	dBm	
Transmitter reflectance				-12	dB	
Transmitter eye mask {X1, X2,X3, Y1, Y2, Y3}		{0.25, 0.4	5, 0.4, 0.45, 0.25, 0.28, 0.4}			
		Receiver				
Signaling rate, each lane			25.78125		GBd	
Receiver Sensitivity per lane	Rsen			-10.6	dBm	1
Input Saturation Power (overload)	Psat			4.5	dBm	
LOS Assert	LOSA	-30			dBm	
LOS De-assert	LOSD			-12		

			W			
Receiver reflectance	Rr			-26		
LOS Hysteresis		0.5		4	dB	

Notes:

1. Measured with a PRBS 2³¹ -1 test pattern, @25.78Gb/s, BER<1E-12.

VII. Digital Diagnostic Functions

The following digital diagnostic characteristics are defined over the normal operating conditions unless otherwise specified.

Parameter	Symbol	Min.	Max	Unit	Notes
Temperature monitor absolute error	DMI_ Temp	-3	3	°C	Over operating temp
Supply voltage monitor absolute error	DMI _VCC	-3	3	%	Full operating range
RX power monitor absolute error	DMI_RX	-3	3	dB	
Bias current monitor error	DMI_ bias	-10	10	%	
TX power monitor absolute error	DMI_TX	-3	3	dB	

VIII. Mechanical Dimensions

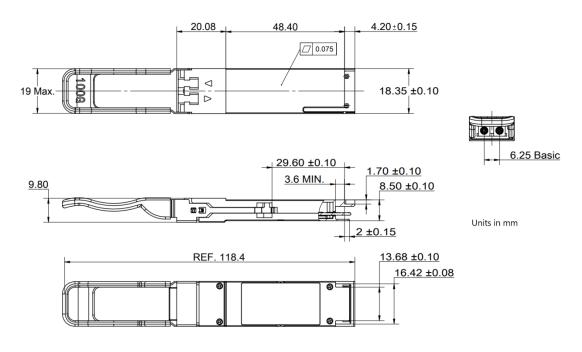


Figure 2. Mechanical Outline

IX. Revision History

Version No.	Initiated	Revised contents	Release Date
V1.0	Andy Zhang	Preliminary datasheet	2018-09-20

X. Contact us

Walsun Technology Co., Ltd

2-5# Tongfufu Industrial Zone, Aiqun Road, Shiyan Street, Baoan District, Shenzhen, China

T. +86 0755-23007456 F. +86 0755-23007451 PC. 518108

E. sales@walsun.com H. www.walsun.com